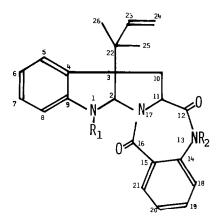
STRUCTURE OF ASZONALENIN, A NEW METABOLITE OF ASPERGILLUS ZONATUS

Yasuo Kimura,* Takashi Hamasaki and Hiromitsu Nakajima Department of Agricultural Chemistry, Tottori University, Koyama, Tottori 680, Japan

Akira Isogai Department of Agricultural Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Summary : Aszonalenin (1) has been isolated from <u>Aspergillus</u> zonatus together with LL-S490 β (2) and the structure of 1 has been established by spectroscopic evidences and chemical transformation.


In the course of our screening for biologically active substances among fungal metabolites, we isolated a new compound from <u>Aspergillus zonatus</u> IFO 8817. We wish to report the isolation and structure of this compound (1) designated aszonalenin. In addition to 1, we isolated LL-S490ß (2) which had been obtained from an unidentified Aspergillus species by Ellestad et al.¹⁾

The fungus was stationarily cultured at 24°C for 21 days in the malt extract medium. The acetone extract from the dry mycelial mats was chromatographed on a column of silica gel and eluted with benzene-acetone (19:1, v/v). After elution of LL-S490 β (2), aszonalenin (1) was obtained as a crude substance, which was rechromatographed over silica gel and eluted with benzeneethyl acetate (19:1, v/v) to give colorless crystals in a yield of 51.2 mg/10 g dry mycelia.

Aszonalenin (1), $C_{22}H_{23}N_3O_2$ (EI-MS, m/z 373 M⁺ and elementary analysis²) mp. 244-247°C, $[\alpha]_D^{20}$ +53° (c=1.31, CHCl₃), forms colorless needles (from CHCl₃-MeOH). The physicochemical data of 1 are as follows. UV $\lambda_{max}^{EtOH} nm(\varepsilon)$; 210 (44,700), 233 (sh, 25,100), 290 (5050). IR ν_{max}^{KBr} cm⁻¹; 3400 (NH), 1700 (C=O, amide), 1640 (C=O, amide), 1620 (C=C), 1578 (Ar). MS m/z; 373 (M⁺), 304 (M⁺-69, base peak), 130. ¹H-NMR spectrum among other spectra was very similar to that of 2. Though a signal at δ 2.59 due to methyl protons of acetyl group in 2 was not observed on the ¹H-NMR spectrum of 1, an additional signal at δ ca. 7.0 assignable to -NH- appeared in the ¹H-NMR spectrum of 1. In the ¹³C-NMR spectrum of 1, signals at δ 24.2 (q) and 171.7 (s) due to acetyl group of 2 were not observed as mentioned below.

The presence of a 1,1-dimethyl-2-propenyl group in 1 was proved by the ¹H-NMR spectrum (δ 1.08, 1.16, 5.04, 5.07, 6.10)³) and the ¹³C-NMR spectrum (δ 22.6, 22.9, 41.7, 114.3, 144.1)⁴) together with IR absorption band (1620

cm⁻¹). A peak at m/z 304 (M⁺-69) in the mass spectrum supported the presence of a 1,1-dimethyl-2-propenyl ion.⁵⁾ 1 was positive to Ehrlich test. The prominent peak at m/z 130 was assigned to the indoline-3-methylene ion.⁶⁾ The UV spectrum (λ_{max}^{EtOH} :210, 233,290 nm) suggested the presence of indoline chromophore⁷⁾ together with indicating the presence of another chromophoric unit. In the ¹H-NMR spectrum, a signal at δ 8.77 was assigned to an amide proton by comparison with the spectrum of 2. From these results and the presence of eight aromatic protons between δ 6.55-7.92, another aromatic ring except for a benzene ring of indoline moiety must be present in 1. The IR spectrum of 1 showed absorption bands at 3240, 1700 and 1640 cm⁻¹, the latter two absorptions of which indicated the dipeptide system.^{7b)} The molecular formula and the above evidences led to the presence of 3,4-dihydro-4-methyl-1H-1,4-benzodiazepine-2,5-dione moiety [UV λ_{max}^{EtOH} nm (ϵ);215 (32,140), 291 (2180). IR ν_{max}^{Nujol} cm⁻¹;1698, 1639. ¹H-NMR (in CDCl₃) δ ;7.0-7.9 (4 x Ar-H)].⁸⁾ From these results obtained above, the structure of 1 was determined as shown in Fig.

1. $R_1 = R_2 = H$ 2. $R_1 = COCH_3$, $R_2 = H$ 3. $R_1 = R_2 = COCH_3$

In the ¹³C-NMR spectrum of 1, signals at δ 33.6 (t) and 57.5 (d) were assigned to C-10 and C-11 from the multiplicities and by comparison with the chemical shifts of echinulin (lit.,⁴⁾ 29.0 and 51.6). Also, two characteristic signals at δ 170.2 and 168.0 could be easily assigned to amide carbons of C-12 and C-16, respectively.⁴⁾ As mentioned above, signals due to the 1,1-dimethyl-2-propenyl carbons were observed. Twelve signals between δ 119.3-141.8 were assigned by comparison with the chemical shifts calculated for <u>o</u>-toluidine and <u>o</u>-tolylisocyanate from the equation of ¹³C substituent effects of substituted benzene.⁹ The remaining two signals at δ 82.0 and 61.1 were assigned to C-2 and C-3 from the chemical shifts and multiplicities. These signals were well coincident with those of <u>2</u> except for signals at δ 24.2 and 171.7 due to an acetyl group.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Table.								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1			<u> </u>	2			Calcd.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Position	Group	$^{\delta}{}_{H}$, ppm	J, Hz	δ _C , ppm	δ _H , ppm	J, Hz	^δ c' ppm	^δ c' ^{ppm}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	NH	ca. 7.0	-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	СН	5.57 s	-	82.0 đ	6.10 s	-	82.4 d	-
5 =CH 6.55 130.9 d 6.83 130.7 d 130.4 d ^b 6 =CH \parallel m - 125.2 d \parallel m - 124.8 d 125.3 d 124.8 d 125.6 d ^b 7 =CH 7.92 - 135.4 s - - 134.8 d 124.8 d 124.8 d ^b 9 =C- - - 135.4 s - - 134.8 s 134.9 s ^b 10 CH2 2.45 dd 14.0 33.6 t 2.42 dd 14.0 30.6 t 29.0 t ^e 8.0 3.46 dd 14.0 3.39 dd 14.0 30.6 t 29.0 t ^e 11 CH 4.02 dd 8.0 57.5 d 3.87 dd 8.0 55.5 d ^e 12 C=O - - 170.2 s - - 169.5 s 168.0 s ^e 13 NH 8.77 s - - 8.62 s - - - 14 =C ⁻ - - 126.8 s - - 167.6 s 165.8 s ^e 15 <td>3</td> <td>-C-</td> <td>-</td> <td></td> <td>61.1 s</td> <td>-</td> <td>-</td> <td>60.7 s</td> <td>- -</td>	3	-C-	-		61.1 s	-	-	60.7 s	- -
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	=C-	-	-	131.5 s	-	-	134.4 s	133.8 s ^D
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	=СН	6.55		130.9 d	6.83		130.7 d	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	=CH		_	125.2 d		-	124.8 d	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	=СН			125.3 d			125.3 d	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	=CH	7.92		121.3 d	8.17		124.8 d	124.8 d ^D
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	=C-	-	-	135.4 s	-	-	134.8 s	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	Сн2	2.45 dd	14.0	33.6 t	2.42 dđ	14.0	30.6 t	29.0 t ^e
11CH 4.02 dd 8.5 8.0 57.5 d 3.87 dd 8.5 8.0 56.9 d 55.5 de12C=0170.2 s169.5 s168.0 se13NH 8.77 s 8.62 s14=C-2149.3 s141.8 s146.6 sC15=C126.8 s127.4 s124.3 sC16C=0168.0 s167.6 s165.8 se17N18=CH 6.55 109.5 d 6.83 119.3 d115.2 dC19=CH $ $		_		8.0			8.0		
11 CH 4.02 dd 8.0 57.5 d 3.87 dd 8.0 56.9 d 55.5 d ^e 12 C=0 - - 170.2 s - - 169.5 s 168.0 s ^e 13 NH 8.77 s - - 8.62 s - - - 14 =C ² - - 149.3 s - - 141.8 s 146.6 s ^C 15 =C- - - 126.8 s - - 127.4 s 124.3 s ^C 16 C=0 - - 168.0 s - - 167.6 s 165.8 s ^e 17 N - - - - - - - 18 =CH 6.55 109.5 d 6.83 119.3 d 115.2 d ^C 19 =CH m - 133.0 d m - 132.8 d 133.6 d ^C 21 =CH 7.92 128.5 d 8.17 129.1 d 129.5 d ^C 22 -C- - - 41.0 s 39.3 s ^e		1	3.46 dd	14.0		3.39 dd	14.0		
12 C=0 - 8.5 - 8.5 - - 169.5 s 168.0 s ^e 13 NH 8.77 s - - 8.62 s - - - 14 =C- - - 149.3 s - - 141.8 s 146.6 s ^C 15 =C- - - 126.8 s - - 127.4 s 124.3 s ^C 16 C=0 - - 168.0 s - - 167.6 s 165.8 s ^e 17 N - - - - - - - 18 =CH 6.55 109.5 d 6.83 - 132.8 d 133.6 d ^C 19 =CH m - 133.0 d m - 121.1 d 118.7 d ^C 21 =CH 7.92 128.5 d 8.17 129.1 d 129.5 d ^C 22 -C- - - 41.7 s - - 41.0 s 39.3 s ^e 23 =CH 6.10 dd 16.0 144.2 d 6.00 dd				8.5			8.5		_
12 C=0 - - 170.2 s - - 169.5 s 168.0 s ^e 13 NH 8.77 s - - 8.62 s - - - 14 =C-' - - 149.3 s - - 141.8 s 146.6 s ^C 15 =C- - - 126.8 s - - 127.4 s 124.3 s ^C 16 C=0 - - 168.0 s - - 167.6 s 165.8 s ^C 17 N - - - - - - - - 18 =CH 6.55 - 109.5 d 6.83 - 119.3 d 115.2 d ^C 19 =CH m - 133.0 d m n 132.8 d 133.6 d ^C 21 =CH 7.92 128.5 d 8.17 129.1 d 129.5 d ^C 22 -C- - - 41.7 s - - 41.0 s 39.3 s ^C 23 =CH 6.10 dd 16.0 144.2 d	11	СН	4.02 dd	8.0	57.5 d	3.87 dd	8.0	56.9 d	55.5 d ^e
13 NH 8.77 s - - 8.62 s - - - - 14 =C ⁻ - - 149.3 s - - 141.8 s 146.6 s ^C 15 =C ⁻ - - 126.8 s - - 127.4 s 124.3 s ^C 16 C=0 - - 168.0 s - - 167.6 s 165.8 s ^e 17 N - - - - - - - 18 =CH 6.55 109.5 d 6.83 119.3 d 115.2 d ^C 19 =CH m - 133.0 d m - 132.8 d 133.6 d ^C 20 =CH 7.92 128.5 d 8.17 129.1 d 129.5 d ^C 21 =CH 7.92 128.5 d 8.17 129.1 d 129.5 d ^C 22 -C- - - 41.0 s 39.3 s ^e 10.0 10.0 144.2 d 6.00 dd 16.0 144.1 d ^e 24 =CH ₂ 5.04 dd 16.0				8.5			8.5		
14=C ² 149.3 s141.8 s146.6 s ^C 15=C126.8 s127.4 s124.3 s ^C 16C=0168.0 s167.6 s165.8 s ^e 17N18=CH6.55-109.5 d6.83119.3 d115.2 d ^C 19=CHm-133.0 dm-132.8 d133.6 d ^C 20=CH7.92128.5 d8.17129.1 d129.5 d ^C 21=CH7.92128.5 d8.17129.1 d129.5 d ^C 22-C41.7 s-41.0 s39.3 s ^e 23=CH6.10 dd16.0144.2 d6.00 dd16.0144.1 d ^e 24=CH ₂ 5.04 dd16.0114.3 t5.20 dd16.0114.3 t113.1 t ^e 25CH ₃ 1.08 s-22.6 q1.02 s-22.6 q27.4 q ^e 26CH ₃ 1.16 s-22.9 q1.16 s-23.0 q27.4 q ^e 27C=O1.17.7 s-	12	C=0	-	-	170.2 s	-	-	169.5 s	168.0 s ^e
15=C126.8 s127.4 s124.3 s ^C 16C=O168.0 s167.6 s165.8 s ^e 17N18=CH6.55-109.5 d6.83-119.3 d115.2 d ^C 19=CH m-133.0 d m-121.1 d118.7 d ^C 20=CH7.92128.5 d8.17129.1 d129.5 d ^C 21=CH7.9241.7 s41.0 s39.3 s ^e 23=CH6.10 dd16.0144.2 d6.00 dd16.0143.6 d144.1 d ^e 24=CH25.04 dd16.0114.3 t5.20 dd16.0114.3 t113.1 t ^e 25CH31.08 s-22.6 q1.02 s-22.6 q27.4 q ^e 26CH31.16 s-22.9 q1.16 s-23.0 q27.4 q ^e 27C=O171.7 s-	13	NH	8.77 s	-	-	8.62 s	-	-	-
16C=0168.0 s167.6 s165.8 s ^e 17N18=CH6.55109.5 d6.83119.3 d115.2 d ^C 19=CHm-133.0 dm-132.8 d133.6 d ^C 20=CHm-128.5 d8.17129.1 d129.5 d ^C 21=CH7.92128.5 d8.17129.1 d129.5 d ^C 22-C41.7 s-41.0 s39.3 s ^e 23=CH6.10 dd16.0144.2 d6.00 dd16.0143.6 d144.1 d ^e 10.010.0144.3 t5.20 dd16.0114.3 t113.1 t ^e 24=CH25.04 dd16.0114.3 t5.25 dd10.0114.3 t113.1 t ^e 25CH31.08 s-22.6 q1.02 s-22.6 q27.4 q ^e 26CH31.16 s-22.9 q1.16 s-23.0 q27.4 q ^e 27C=O171.7 s-	14	=Ć-	-	-	149.3 s	-	-	141.8 s	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	=C-	-	-	126.8 s	-	-	127.4 s	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	C=0	-	-	168.0 s	-	-	167.6 s	165.8 s ^e
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17	N	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	=CH	6.55		109.5 d	6.83		119.3 d	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	=CH			133.0 d			132.8 đ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	=СН	m	-	118.9 d	m	-	121.1 d	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	=CH	7.92		128.5 d	8.17		129.1 d	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	-C-	-	-	41.7 s	-	-	41.0 s	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	=CH	6.10 dd	16.0	144.2 d	6.00 dd	16.0	143.6 d	144.1 d ^e
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				10.0			10.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	=CH ₂	5.04 dd	16.0	114.3 t	5.20 dd	16.0	114.3 t	113.1 t ^e
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2.0			2.0		
25 CH_3 1.08 s-22.6 q1.02 s-22.6 q27.4 q ^e 26 CH_3 1.16 s-22.9 q1.16 s-23.0 q27.4 q ^e 27 $C=0$ 171.7 s-			5.07 dd	10.0		5.25 dd	10.0		
26 CH_3 1.16 s-22.9 q1.16 s-23.0 q27.4 q ^e 27C=0171.7 s-				2.0			2.0		-
26 CH ₃ 1.16 s - 22.9 q 1.16 s - 23.0 q 27.4 q ^e 27 C=0 - - - - - 171.7 s -	25	Сн ₃	1.08 s	-	22.6 q		-		
27 C=0 171.7 s -	26		1.16 s	-	22.9 q	1.16 s	-	23.0 q	27.4 q ^e
28 CH ₃ 2.59 s - 24.2 q -	27		-	-	-	-	-		-
	28	CH ₃	-	-	-	2.59 s	-	24.2 q	-

Table. ¹H-NMR and ¹³C-NMR Spectral Data of Aszonalenin (1) and LL-S490 β (2)^a

^aMeasured in CDCl₃solution. ^bCalculated for <u>o</u>-toluidine. See reference 9). ^CCalculated for <u>o</u>-tolylisocyanate. See reference 9). ^eObtained from reference 4). Furthermore, the validity of this structure was proved by acetylation of 1. Treatment of 1 with acetic anhydride in pyridine at reflux for 3 hours gave mono- and di-acetates (2 and 3). Monoacetate of 1, mp. 242-244°C, was identified as LL-S490 β in comparison with IR, UV, ¹H-NMR and MS spectra. The structure of diacetate [δ 1.38 (3H, s, CH₃CO-), 2.68 (3H, s, CH₃CO-)] was determined as 3¹⁰ in which -NH-s of indoline and benzodiazepine moiety were acetylated. On acetylation with the same condition, LL-S490 β also gave 3.

Application of 1 at a concentration of 50 µg/ml apparently induced the abnormal second cleavage of the sea urchin embryos.

References and Footnotes

- G. A. Ellestad, P. Mirando and M. P. Kunstmann, <u>J. Org. Chem.</u>, <u>24</u>, 4204 (1973).
- 2) 1: Anal. Found :C, 73.68;H, 6.33;N, 11.28, Calcd. for C₂₃H₂₃N₃O₂:C, 73.97; H, 6.21;N, 11.25;O, 8.57 %.
- 3) A. J. Birch and J. J. Wright, Tetrahedron, 26, 2329(1970).
- 4) H. Nagasawa, A. Isogai, A. Suzuki and S. Tamura, <u>Agric. Biol. Chem.</u>, 43 1759(1979).
- R. Marchelli, A. Dossena, A. Pochini and E. Dradi, J. Chem. Soc. Perkin I, 713(1977).
- J. H. Beynon, R. A. Sanders and A. E. Williams, "The Mass Spectra of Organic Molecules", Elsevier, New York, N. Y., 1968, p.303.
- 7) a) A. I. Scott, "Ultraviolet Spectra of Natural Products", Pergamon Press, Oxford, 1964, p.174; b) M. Ohno, T. F. Spande and B. Witkop, <u>J. Am. Chem.</u> <u>Soc.</u>, <u>92</u>, 343(1970).
- P. K. Martin, H. Rapoport, H. W. Smith and J. L. Wong, <u>J. Org. Chem.</u>, <u>34</u>, 1359(1969).
- 9) G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemist", Wiley-Interscience, a Division of John Wiley & Sons, Inc., New York, N. Y., 1972, p.81.
- 10) 3: White amorphous mp. 218-221°C; UV λ_{max}^{EtOH} nm(ε): 206 (72,200), 237 (25,400), 277 (5000); IR ν_{max}^{KBr} cm⁻¹: 1735, 1720, 1688, 1650,1600; ¹H-NMR (in CDCl₃): 0.90 (3H, s), 1.12 (3H, s), 1.38 (3H, s), 2.68 (3H, s), 2.54 (1H, dd, J=14.0, 8.5 Hz), 3.12 (1H, d, J=14.0 Hz), 4.22 (1H, d, J=8.5 Hz), 5.08 (1H, dd, J=16.0, 2.0 Hz), 5.13 (1H, dd, J=10.0, 2.0 Hz0, 5.86 (1H, dd, J=16.0, 10.0 Hz), 6.11 (1H, s), 7.02-8.02 (m, 8 x Ar-H); MS m/z: 457 (M⁺), 415 (M⁺-42), 346 (M⁺-42-69), 304 (M⁺-42-69-42), 130.

(Received in Japan 29 September 1981)

228